是否支持加工定制是
主电机功率5.5
加工齿数10
控制形式数控
布局形式卧式
加工齿轮类型直齿,延长外摆线齿轮,弧齿,锥齿,斜齿
产品类型全新
动力类型液压
运输方式物流或协商
加工类型金属成型
应用范围五金配件,家具配件,机械配件
定制方式来图来样来尺
数控车床(CNC车床)是一种通过计算机程序控制的自动化机床,广泛应用于制造业。它的主要用途包括:
### 1. **精密零件加工**
- CNC车床能够以高的精度加工复杂形状的零件,适用于、汽车、设备等对精度要求高的行业。
### 2. **批量生产**
- 通过编程,CNC车床可以快速、重复地生产相同规格的零件,适合大规模生产。
### 3. **复杂形状加工**
- CNC车床可以加工传统车床难以完成的复杂几何形状,如曲面、螺纹、凹槽等。
### 4. **多种材料加工**
- CNC车床可以加工多种材料,包括金属(如钢、铝、铜)、塑料、复合材料等。
### 5. **提高生产效率**
- 自动化操作减少了人工干预,提高了加工速度,同时降低了人为错误的可能性。
### 6. **降低生产成本**
- 通过减少废料、提高材料利用率和降低人工成本,CNC车床有助于降低整体生产成本。
### 7. **灵活性强**
- 只需修改程序即可加工不同零件,无需更换设备,适应性强。
### 8. **表面处理**
- CNC车床可以实现高光洁度的表面处理,减少后续抛光或打磨的工序。
### 9. **定制化生产**
- 适用于小批量、定制化生产,满足个性化需求。
### 10. **多轴加工**
- 多轴CNC车床可以同时完成多个工序,提高加工效率和精度。
### 应用领域:
- **汽车制造**:发动机零件、传动系统、制动系统等。
- ****:涡轮叶片、机身结构件等。
- **设备**:、手术器械等。
- **电子工业**:精密连接器、外壳等。
- **模具制造**:注塑模具、冲压模具等。
总之,CNC车床是现代制造业中的工具,以其高精度、率和多功能的特性,广泛应用于各个工业领域。
2.5次元CNC加工是一种介于2D和3D之间的加工方式,通常用于处理具有简单三维特征的零件。它结合了二维平面加工和有限的三维加工能力,适合处理具有垂直面、斜面或简单曲面特征的工件。以下是2.5次元CNC加工的主要功能和应用:
### 1. **平面加工**
- 可以在XY平面上进行铣削、钻孔、攻丝等操作,完成二维形状的加工。
- 适用于加工平面、槽、孔等简单几何形状。
### 2. **垂直面加工**
- 可以在Z轴方向上进行垂直面的铣削或切削,加工出垂直于XY平面的特征。
- 适用于加工台阶、侧壁等垂直结构。
### 3. **斜面加工**
- 通过控制Z轴的移动,加工出具有一定角度的斜面。
- 适用于加工斜面、倒角等简单三维特征。
### 4. **简单曲面加工**
- 可以加工一些简单的三维曲面,如圆弧面、锥面等。
- 适用于加工简单的三维形状,但无法处理复杂的自由曲面。
### 5. **分层加工**
- 通过逐层切削的方式,在Z轴方向上逐步完成三维特征的加工。
- 适用于加工具有分层结构的零件,如阶梯状或简单的三维轮廓。
### 6. **加工**
- 由于加工路径相对简单,2.5次元CNC加工通常比全3D加工,适合批量生产。
- 适用于对加工效率要求较高的场景。
### 7. ****
- 与全3D加工相比,2.5次元CNC加工的编程和操作更简单,设备成本更低。
- 适合预算有限或对加工精度要求不高的场景。
### 应用领域
- 模具制造:加工简单模具或模具的二维特征。
- 机械零件:加工具有垂直面、斜面或简单曲面的零件。
- 电子行业:加工PCB板、外壳等简单三维结构。
- 汽车零部件:加工简单的汽车零件,如支架、连接件等。
### 局限性
- 无法处理复杂的自由曲面或复杂的三维形状。
- 对于高精度的三维加工需求,可能需要升级到全3D CNC加工。
总结来说,2.5次元CNC加工是一种、的选择,适合处理具有简单三维特征的零件,但在复杂三维加工方面能力有限。

2.5次元CNC加工是一种介于2D和3D之间的数控加工技术,具有以下特点:
### 1. **加工维度**
- **介于2D和3D之间**:2.5次元加工主要在二维平面上进行,但允许在Z轴方向上进行有限的移动,以实现简单的深度变化或轮廓加工。
- **不完全3D**:与全3D加工不同,2.5次元加工不支持复杂的曲面加工,通常用于加工带有简单深度变化的平面轮廓。
### 2. **加工效率**
- ****:由于加工路径相对简单,2.5次元加工通常比全3D加工,适合批量生产。
- **减少编程复杂性**:加工路径的规划相对简单,编程时间较短。
### 3. **加工精度**
- **高精度**:2.5次元加工能够实现较高的加工精度,适合对平面轮廓和简单深度变化要求较高的零件。
- **表面质量好**:由于路径相对简单,加工表面质量通常较好。
### 4. **应用范围**
- **适合简单轮廓加工**:如平面轮廓、槽、孔、凸台等。
- **不适合复杂曲面**:对于需要复杂曲面加工的零件,2.5次元加工无法满足需求。
### 5. **设备要求**
- **设备成本较低**:相比全3D加工设备,2.5次元CNC设备成本较低,维护也相对简单。
- **操作简便**:操作人员的技术要求相对较低,培训周期较短。
### 6. **加工材料**
- **广泛适用**:适用于金属、塑料、木材等多种材料,但主要用于加工硬度较低或中等硬度的材料。
### 7. **加工成本**
- **成本较低**:由于加工路径简单,加工时间短,整体加工成本较低。
### 8. **适用行业**
- **模具制造**:用于加工模具的简单轮廓和槽。
- **机械零件**:适合加工平面零件、齿轮、凸轮等。
- **电子行业**:用于加工PCB板、外壳等。
### 总结
2.5次元CNC加工是一种、高精度且成本较低的加工方式,特别适合加工带有简单深度变化的平面轮廓零件。然而,对于需要复杂曲面加工的零件,2.5次元加工则无法满足需求。

五轴CNC(计算机数控)加工是一种的制造技术,能够通过同时控制五个轴的运动来实现复杂几何形状的加工。与传统的三轴CNC加工相比,五轴CNC加工具有更高的灵活性和精度,适用于制造复杂零件。以下是五轴CNC加工的主要功能:
### 1. **复杂几何形状加工**
- 五轴CNC可以同时控制X、Y、Z三个线性轴以及两个旋转轴(通常为A轴和B轴或C轴),使得能够从多个角度接近工件。这种能力使其能够加工复杂的曲面、倾斜面、深腔等几何形状,如涡轮叶片、螺旋桨、模具等。
### 2. **减少装夹次数**
- 在五轴加工中,工件通常只需一次装夹即可完成多面加工,减少了装夹次数和误差积累,提高了加工效率和精度。
### 3. **提高加工精度**
- 五轴CNC可以通过优化路径和减少振动来提高加工精度,尤其是在加工复杂曲面时,能够保持更高的表面质量。
### 4. **缩短加工时间**
- 五轴加工可以通过优化路径和减少空走刀来缩短加工时间,提高生产效率。
### 5. **加工深腔和窄缝**
- 五轴CNC可以通过调整角度,轻松加工深腔、窄缝等传统三轴CNC难以处理的区域。
### 6. **加工复杂曲面**
- 五轴CNC可以加工复杂曲面,如零件、器械、汽车零部件等,满足高精度和高表面质量的要求。
### 7. **多面加工**
- 五轴CNC可以在一次装夹中完成工件的多个面的加工,减少重复定位误差,提高加工一致性。
### 8. **寿命延长**
- 五轴CNC可以通过优化角度和切削路径,减少磨损,延长使用寿命。
### 9. **适应多种材料**
- 五轴CNC可以加工多种材料,包括金属、塑料、复合材料等,适用于、汽车、、模具等多个行业。
### 10. **模拟与优化**
- 五轴CNC通常配备的CAM(计算机制造)软件,可以在加工前进行模拟和优化,确保加工过程的安全性和效率。
### 应用领域
- ****:加工复杂的涡轮叶片、发动机零件等。
- **汽车工业**:制造高精度的模具、发动机部件和车身零件。
- **器械**:加工复杂的植入物、手术器械等。
- **模具制造**:制造高精度的注塑模具、压铸模具等。
- **能源行业**:加工燃气轮机叶片、水力发电零件等。
总之,五轴CNC加工技术在现代制造业中具有重要地位,能够满足高精度、率、复杂形状的加工需求。

三轴CNC加工是一种常见的数控加工方式,具有以下特点:
### 1. **结构简单,操作方便**
- 三轴CNC机床通常由X、Y、Z三个线性轴组成,结构相对简单,易于操作和维护。
- 适合初学者和中小型企业使用,学习曲线较低。
### 2. **加工范围有限**
- 三轴加工只能在一个平面上进行切削,适合加工二维或简单三维形状的零件。
- 对于复杂的曲面或多面加工,三轴机床的灵活性较低。
### 3. **成本较低**
- 相比四轴或五轴CNC机床,三轴机床的制造成本和采购成本更低,适合预算有限的企业。
### 4. **加工效率适中**
- 对于简单的平面或轮廓加工,三轴CNC可以完成任务。
- 但对于复杂零件,可能需要多次装夹或手动调整,影响效率。
### 5. **适用范围广**
- 三轴CNC广泛应用于模具制造、零件加工、雕刻等领域,尤其适合加工平面、槽、孔等几何特征。
### 6. **装夹要求较高**
- 由于只能在一个平面上加工,复杂零件可能需要多次装夹,增加了时间和误差风险。
### 7. **精度较高**
- 三轴CNC加工可以实现较高的加工精度,适合对尺寸和表面质量要求较高的零件。
### 8. **局限性**
- 无法直接加工复杂的空间曲面或需要多角度切削的零件。
- 对于需要多面加工的零件,效率较低。
### 总结
三轴CNC加工是一种经济实用、操作简单的加工方式,适合加工平面或简单三维零件。但对于复杂零件或率生产需求,可能需要更高轴数的CNC机床。
2.5次元CNC加工是一种介于二维和三维之间的加工方式,主要适用于以下场景:
### 1. **平面轮廓加工**
- **适用场景**:需要加工平面上的复杂轮廓,如模具、零件的外形切割、开槽等。
- **特点**:沿Z轴方向固定或仅进行简单的上下移动,主要沿X、Y轴进行平面运动。
### 2. **浅浮雕加工**
- **适用场景**:需要加工浅浮雕图案,如标识牌、装饰面板、艺术品等。
- **特点**:通过控制Z轴的微小变化,在平面上雕刻出浅层立体效果。
### 3. **薄壁零件加工**
- **适用场景**:加工薄壁零件,如电子设备外壳、金属薄板等。
- **特点**:避免Z轴深度过大导致材料变形,适合浅层加工。
### 4. **平面刻字与标记**
- **适用场景**:在平面上刻字、标记或图案,如产品标识、铭牌、二维码等。
- **特点**:通过在平面上进行浅层雕刻,精度高,效率快。
### 5. **简单曲面加工**
- **适用场景**:加工简单的曲面或斜面,如倒角、斜面开槽等。
- **特点**:Z轴仅进行简单的倾斜或曲线运动,适合加工浅层曲面。
### 6. **板材切割与开孔**
- **适用场景**:金属、塑料、木材等板材的切割、开孔、镂空等。
- **特点**:沿X、Y轴运动,Z轴仅用于穿透或浅层加工。
### 7. **模板与模具加工**
- **适用场景**:加工模板、模具的平面轮廓或浅层结构。
- **特点**:适合精度要求较高的平面加工,如冲压模具、注塑模具等。
### 8. **PCB板加工**
- **适用场景**:印刷电路板(PCB)的钻孔、切割和雕刻。
- **特点**:Z轴主要用于钻孔或浅层雕刻,平面运动精度高。
### 9. **装饰性加工**
- **适用场景**:家具、建筑装饰、工艺品等领域的装饰性加工。
- **特点**:通过浅层雕刻或切割实现复杂的装饰效果。
### 10. **加工需求**
- **适用场景**:预算有限、不需要复杂三维加工的场合。
- **特点**:2.5次元CNC设备成本较低,适合简单加工任务。
### 优势:
- **成本低**:相比3D加工,设备价格和维护成本更低。
- **效率高**:适合批量加工平面或浅层结构,速度快。
- **精度高**:平面加工精度高,适合对表面质量要求高的场景。
### 局限性:
- 无法加工复杂的三维曲面或深度较大的结构。
- 适合浅层加工,深度较大的工件需要3D加工。
总之,2.5次元CNC加工在平面、浅层结构加工领域具有广泛的应用,适合对精度、效率和成本有较高要求的场景。
http://www.szruitongjm.com