公差0.01
类型CNC加工中心
较大长度可定制(mm)
加工精度精加工
加工周期3-7天
较大直径可定制(mm)
加工材料H62铜 非标
打样周期1~3天
是否跨境出口专供货源否
材质不锈钢、铝、铜等
适用范围五金、机械、机电、电子配件等
加工种类精加工
加工设备cnc车床、车铣车床、自动车床等
表面处理抛光、打磨等
2.5次元CNC加工是一种介于2D和3D之间的加工方式,主要用于处理具有简单三维特征的工件。它在制造业中具有广泛的应用,以下是其主要用途:
### 1. **模具制造**
- 用于加工模具的型腔、型芯等部件,尤其是需要简单三维形状的模具。
- 适合制造注塑模具、冲压模具等。
### 2. **零件加工**
- 适用于加工具有阶梯、斜面、凹槽等简单三维特征的机械零件。
- 常用于制造机械设备的零部件,如齿轮、法兰、壳体等。
### 3. **电子产品外壳加工**
- 用于加工电子产品的外壳,如手机、平板电脑、笔记本电脑等,这些外壳通常需要简单的三维特征。
### 4. **工艺品制作**
- 适合加工具有简单立体效果的工艺品、装饰品等。
### 5. **零部件**
- 用于加工领域中的一些简单三维结构件,如支架、连接件等。
### 6. **汽车零部件**
- 用于制造汽车中的简单三维零件,如发动机支架、仪表盘外壳等。
### 7. **设备零件**
- 用于加工设备中的简单三维部件,如手术器械、设备外壳等。
### 8. **建筑模型制作**
- 用于制作建筑模型或具有简单三维特征的建筑构件。
### 9. **快速原型制作**
- 用于制作产品的快速原型,验证设计是否符合要求。
### 10. **教育及研发**
- 用于教学和研发中,帮助学生或工程师理解简单三维加工的原理和应用。
### 优势:
- **成本低**:相比3D加工,2.5次元加工成本更低,适合预算有限的项目。
- **效率高**:加工速度快,适合批量生产。
- **精度高**:能够满足大多数简单三维工件的精度要求。
总之,2.5次元CNC加工在需要简单三维特征的领域中具有重要应用,能够平衡成本、效率和精度需求。
电脑锣CNC(Computer Numerical Control,计算机数控)加工是一种高精度、率的自动化加工技术,广泛应用于制造业。其特点主要包括以下几个方面:
### 1. **高精度和高重复性**
- CNC加工通过计算机程序控制机床的运动,能够实现高的加工精度,通常可以达到微米级别的精度。
- 由于程序化控制,加工过程具有的重复性,能够保证批量生产中的一致性。
### 2. **自动化程度高**
- CNC加工实现了高度自动化,操作人员只需编写加工程序并设置参数,机床即可自动完成加工任务,减少了人工干预,降低了人为误差。
- 支持多轴联动(如3轴、4轴、5轴等),能够完成复杂的加工任务。
### 3. **加工范围广**
- CNC加工适用于多种材料,包括金属(如铝、钢、钛合金等)、塑料、木材、复合材料等。
- 能够完成多种加工工艺,如铣削、钻孔、镗孔、攻丝、雕刻等。
### 4. **灵活性高**
- 通过修改加工程序,可以快速切换加工任务,适应不同产品的需求,特别适合小批量、多品种的生产。
- 支持复杂形状和曲面的加工,能够完成传统加工方法难以实现的任务。
### 5. **生产效率高**
- CNC加工可以实现连续作业,减少停机时间,提高生产效率。
- 高速切削技术的应用进一步提升了加工速度。
### 6. **减少材料浪费**
- 通过的加工路径规划和优化,CNC加工可以大限度地减少材料浪费,降。
### 7. **可追溯性和质量控制**
- CNC加工过程可以通过计算机记录和监控,便于追溯加工参数和质量控制。
- 实时监测磨损和加工状态,确保加工质量。
### 8. **技术要求高**
- 需要操作人员具备一定的编程能力(如G代码、CAM软件)和机床操作经验。
- 设备的维护和保养要求较高,以确保长期稳定运行。
### 9. **成本较高**
- CNC设备本身价格较高,且需要的技术人员和软件支持,初期投入较大。
- 适合高附加值或高精度要求的加工任务。
### 10. **应用领域广泛**
- CNC加工广泛应用于、汽车制造、模具制造、器械、电子设备、精密零件等领域。
总之,电脑锣CNC加工以其高精度、率和灵活性成为现代制造业中的技术手段,但也需要较高的技术水平和资金投入。

三轴CNC加工是一种常见的数控加工方式,具有以下特点:
### 1. **加工范围广泛**
- 三轴CNC机床可以在X、Y、Z三个方向上进行运动,适用于加工平面、曲面、孔、槽等多种几何形状的零件。
- 适合加工中小型零件,广泛应用于模具制造、、汽车、电子等领域。
### 2. **操作简单**
- 三轴CNC机床的结构相对简单,编程和操作相对容易掌握,适合初学者或加工复杂度不高的工件。
- 软件支持广泛,常见的CAM软件(如Mastercam、UG、SolidWorks等)都可以生成三轴加工程序。
### 3. **加工精度高**
- CNC机床通过数控系统控制的运动,能够实现高精度的加工,满足严格的公差要求。
- 重复加工精度高,适合批量生产。
### 4. **加工效率较高**
- 三轴CNC机床可以实现自动化加工,减少人工干预,提高生产效率。
- 对于简单或中等复杂度的零件,三轴加工效率较高。
### 5. **成本相对较低**
- 相比于四轴、五轴CNC机床,三轴机床的购置和维护成本较低,适合预算有限的企业。
- 和夹具的成本也相对较低。
### 6. **局限性**
- 三轴CNC机床只能同时控制三个方向的运动,因此无法加工复杂的三维曲面或需要多角度加工的零件。
- 对于某些复杂零件,可能需要多次装夹,增加了加工时间和误差风险。
### 7. **适用材料多样**
- 三轴CNC机床可以加工多种材料,包括金属(如铝、钢、铜等)、塑料、木材等。
### 8. **灵活性较高**
- 通过更换和调整程序,三轴CNC机床可以快速适应不同的加工任务。
### 总结
三轴CNC加工是一种经济实用、精度较高的加工方式,适合加工复杂度中等或以下的零件。虽然在某些复杂加工任务中存在局限性,但其广泛的适用性和较低的成本使其成为制造业中的主流选择。

不锈钢加工具有以下几个显著特点:
### 1. **高硬度与强度**
- 不锈钢材料本身硬度较高,尤其是奥氏体不锈钢,加工时容易产生加工硬化现象,导致磨损加快。
- 需要选择耐磨性强的,并控制加工参数以减少损耗。
### 2. **耐腐蚀性**
- 不锈钢含有铬、镍等合金元素,使其具有的耐腐蚀性。
- 加工过程中需避免使用含氯的冷却液,以防止腐蚀。
### 3. **导热性差**
- 不锈钢的导热性较差,加工时产生的热量不易散发,容易导致工件和温度升高。
- 需要使用冷却液或切削液来降低温度,避免工件变形和损坏。
### 4. **粘附性强**
- 不锈钢在加工时容易产生切屑粘附在上,影响加工精度和表面质量。
- 需要选择适当的涂层和切削参数,以减少粘附现象。
### 5. **加工硬化**
- 不锈钢在加工过程中容易发生加工硬化,导致材料硬度增加,进一步加大加工难度。
- 需要采用合适的切削速度和进给量,避免过度硬化。
### 6. **表面质量要求高**
- 不锈钢常用于高精度或外观要求高的产品,加工时需确保表面光洁度。
- 需要精细的加工工艺和抛光处理。
### 7. **选择关键**
- 由于不锈钢的特殊性质,材料需具备高硬度、耐磨性和抗粘附性。
- 常用的材料包括硬质合金、陶瓷和涂层。
### 8. **加工效率较低**
- 由于不锈钢的加工难度较大,加工效率通常低于普通碳钢。
- 需要优化加工工艺以提率。
### 9. **环保要求**
- 不锈钢加工过程中产生的切屑和冷却液需妥善处理,避免环境污染。
综上所述,不锈钢加工需要综合考虑材料特性、选择、加工参数和冷却方式,以确保加工质量和效率。

数控车床(CNC车床)是一种通过计算机数字控制(CNC)技术实现自动化加工的机床,广泛应用于机械制造领域。它能够通过预先编写的程序控制机床的运动,完成复杂零件的加工。以下是数控车床CNC加工的主要功能:
### 1. **高精度加工**
- CNC车床能够实现微米级甚至更高精度的加工,确保零件的尺寸、形状和位置公差符合设计要求。
- 通过程序控制,减少了人为误差,提高了加工的一致性和重复性。
### 2. **复杂形状加工**
- CNC车床可以加工复杂几何形状的零件,如曲面、锥面、螺纹、沟槽等。
- 支持多轴联动(如2轴、3轴、4轴甚至更多),能够完成更复杂的加工任务。
### 3. **自动化操作**
- CNC车床通过程序控制,能够实现自动换刀、自动进给、自动冷却等功能,减少了人工干预。
- 支持批量生产,显著提高了生产效率。
### 4. **多种材料加工**
- CNC车床可以加工多种材料,包括金属(如钢、铝、铜、钛合金等)、塑料、复合材料等。
- 通过调整和加工参数,适应不同材料的加工需求。
### 5. **切削**
- CNC车床能够实现高速切削,缩短加工时间,提高生产效率。
- 支持优化切削路径,减少磨损,延长寿命。
### 6. **多功能集成**
- 现代CNC车床通常集成了车削、铣削、钻孔、攻丝等多种功能,实现一机多用。
- 支持复合加工,减少工件装夹次数,提高加工精度和效率。
### 7. **程序化控制**
- CNC车床通过G代码或CAM软件生成的程序进行控制,支持复杂加工路径的编程。
- 程序可以保存和重复使用,方便批量生产和后续加工。
### 8. **实时监控与反馈**
- 现代CNC车床配备了传感器和监控系统,能够实时监测加工状态(如磨损、温度、振动等)。
- 支持自动调整加工参数,确保加工质量。
### 9. **灵活性高**
- CNC车床可以快速切换加工程序,适应不同零件的加工需求,适合小批量、多品种的生产模式。
- 支持定制化加工,满足个性化需求。
### 10. **减少废品率**
- 通过的程序控制和实时监控,CNC车床能够减少加工中的错误,降低废品率。
- 支持模拟加工,提前发现并修正程序中的问题。
### 11. **节能环保**
- CNC车床通过优化加工路径和参数,减少能源消耗和材料浪费。
- 支持冷却液和切屑的回收利用,降低对环境的影响。
### 12. **远程控制与联网**
- 现代CNC车床支持联网功能,实现远程监控、诊断和程序传输。
- 支持与工厂MES系统集成,实现智能制造和数字化管理。
### 应用领域
CNC车床广泛应用于以下领域:
- :加工高精度、复杂形状的零件。
- 汽车制造:生产发动机零件、传动系统等。
- 模具制造:加工高精度模具。
- 电子行业:生产精密零件和外壳。
- 器械:加工高精度、高洁净度的零件。
总之,数控车床CNC加工以其高精度、率、多功能性和灵活性,成为现代制造业的重要工具。
四轴CNC(计算机数控)加工是一种在传统三轴(X、Y、Z)基础上增加了旋转轴(通常为A轴或B轴)的加工技术。这种加工方式能够实现更复杂的几何形状和多面加工,适用于多种场景。以下是四轴CNC加工的主要适用场景:
### 1. **复杂曲面加工**
- **适用领域**:、汽车制造、模具制造等。
- **应用实例**:加工涡轮叶片、螺旋桨、发动机零件等具有复杂曲面的工件。
- **优势**:四轴加工可以在一次装夹中完成多个面的加工,减少重夹误差,提高加工精度和效率。
### 2. **多面加工**
- **适用领域**:机械制造、电子产品、器械等。
- **应用实例**:加工需要多个面进行切削的工件,如壳体、支架、连接件等。
- **优势**:通过旋转轴,可以在一次装夹中完成多个面的加工,减少加工时间和成本。
### 3. **圆柱形零件加工**
- **适用领域**:轴类零件、齿轮、轴承等。
- **应用实例**:加工圆柱形零件上的键槽、螺纹、孔等特征。
- **优势**:四轴加工可以在圆柱形工件上进行连续的切削,确保加工的一致性和精度。
### 4. **雕刻和艺术加工**
- **适用领域**:艺术品、装饰品、雕塑等。
- **应用实例**:在复杂的三维模型上进行精细雕刻,如木雕、石雕、金属雕刻等。
- **优势**:四轴加工可以实现更精细的细节和更复杂的形状,提升艺术品的表现力。
### 5. **多角度孔加工**
- **适用领域**:机械制造、、汽车工业等。
- **应用实例**:加工需要多角度钻孔的工件,如发动机缸体、变速箱壳体等。
- **优势**:四轴加工可以在不同角度上进行钻孔,确保孔的精度和位置。
### 6. **齿轮和凸轮加工**
- **适用领域**:齿轮制造、机械传动系统等。
- **应用实例**:加工齿轮、凸轮、偏心轮等具有复杂轮廓的零件。
- **优势**:四轴加工可以实现齿轮和凸轮的加工,确保传动系统的平稳运行。
### 7. **设备零件加工**
- **适用领域**:器械、假肢、植入物等。
- **应用实例**:加工具有复杂形状和精密要求的零件,如、牙科植入物等。
- **优势**:四轴加工可以满足设备对高精度和复杂形状的要求。
### 8. **定制化零件加工**
- **适用领域**:小批量生产、定制化产品等。
- **应用实例**:加工定制化的机械零件、模具、夹具等。
- **优势**:四轴加工可以灵活应对不同形状和尺寸的工件,满足定制化需求。
### 9. **复合材料加工**
- **适用领域**:、汽车工业、体育用品等。
- **应用实例**:加工碳纤维、玻璃纤维等复合材料制成的零件。
- **优势**:四轴加工可以控制切削角度和深度,减少材料损伤,提高加工质量。
### 10. **自动化生产线**
- **适用领域**:大规模生产、智能制造等。
- **应用实例**:在自动化生产线上进行多工位、多工序的连续加工。
- **优势**:四轴加工可以与自动化设备集成,实现、连续的加工流程。
### 总结
四轴CNC加工因其能够在一次装夹中完成多面、多角度的加工,广泛应用于需要高精度、复杂形状和多工序的制造领域。它不仅能提高加工效率,还能减少人为误差,提升产品质量,特别适合复杂零件、定制化产品和高精度要求的场景。
http://www.szruitongjm.com